15CS32

Third Semester B.E. Degree Examination, Aug./Sept. 2020 **Analog and Digital Electronics**

Time: 3 hrs.

Max. Marks: 80

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

1	а	Explain the working of N-channel E-MOSFET, with the help of neat diagram.	(08 Marks)
	u.	Explain the CERT	(00 M I)
	b.	With the circuit diagram explain any four applications of FET.	(08 Marks)

OR

2	а	Explain the performance parameters of op-amp.	<i>#</i>	(08 Marks)
_	u.	Explain and personnel 1	A.	(00 1/4 1)
	b.	Explain Relaxation Oscillator with diagram.	A 100 A	(08 Marks)

Module-2

Simpify following Boolean functions using k-map method. i) $F(A, B, C, D) = \pi M (0, 1, 2, 4, 5, 10) + d(8, 9, 11, 12, 13, 15)$

ii) $F(A, B, C, D) = \sum m(0, 2, 3, 8, 10, 11, 12, 14)$ (08 Marks)

Explain Universal gates in brief.

(08 Marks)

What is Hazard? Explain its types with example. (08 Marks) Apply QUINE-McClusky method to find prime implecants for the Boolean expression (08 Marks) $F(A, B, C, D) = \sum m(1, 2, 8, 9, 10, 12, 13, 14).$

Module-3

Define Multiplexer, List types of multiplers Implement the following function using 5 (08 Marks) 4 to 1 Mux $f(a, b, c) = \sum m(0, 4, 5, 6)$

Define decoder, Implement 3-8 decoder for the expression $F(A, B, C) = \sum m(2, 4, 5, 7)$.

(08 Marks)

OR

Design Seven Segment decoder using PLA.

(08 Marks)

Design Full adder circuit.

(08 Marks)

Module-4

Explain the working of JK Master - Slave flip-flop with diagram. (08 Marks) (08 Marks)

Draw the state transition table of J-K, SR, T and D-flip-flops.

(08 Marks) Explain Ring and Johnson counter with diagram.

What is Shift Register? With neat diagram, explain the serial in parallel out Shift Register. (08 Marks)

Module-5

Define Counter, Design and implement a MOD - 6 synchronous counter using J-K flip-flop. (08 Marks)

With neat diagram, explain Digital clock

(08 Marks)

Explain with circuit diagram, decade counter. 10

(08 Marks)

(08 Marks) Explain 2-bit Simultaneous A/D converters.

Important Note: 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.

2. Any revealing of identification, appeal to evaluator and /or equations written eg, 42+8 = 50, will be treated as malpractice.